Пятница, 04.07.2025, 22:49Приветствую Вас Посторонний | RSS
Главная | | Регистрация | Вход
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 2 из 2
  • «
  • 1
  • 2
Психология игр
GRELIKTIKONДата: Среда, 27.04.2011, 20:23 | Сообщение # 11
Генералиссимус
Группа: Администраторы
Сообщений: 1400
Награды: 0
Репутация: 0
Статус: Offline
С полной или неполной информацией

Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр — с неполной информацией. Например, вся «соль» Дилеммы заключённого или Сравнения монеток заключается в их неполноте.

В то же время есть интересные примеры игр с полной информацией: «Ультиматум», «Многоножка». Сюда же относятся шахматы, шашки, го, манкала и другие.

Часто понятие полной информации путают с похожим — совершенной информации. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.

Игра с полной информацией

Игра с полной информацией — термин теории игр, обозначающий логическую игру, в которой для соперников отсутствует элемент неопределённости.

Не вполне строго, но практически можно считать, что игра является игрой с полной информацией, если:

* игроки воздействуют на игровую ситуацию дискретными действиями — ходами, порядок ходов определён правилами и не зависит от таких параметров, как скорость реакции игроков (то есть очередной ход делает тот, кто должен его сделать по правилам, а не тот, кто первым догадался или успел его сделать);
* в любой момент игры все игроки имеют полную информацию о состоянии игры, то есть о позиции и всех возможных ходах любого из игроков.

Если, к тому же, ни в каких аспектах игры (правилах, возможности или очерёдности ходов, определении момента завершения игры или результата) не участвует элемент случайности, такая игра будет ещё и детерминированной.

Для любой детерминированной игры с полной информацией, теоретически, можно просчитать всё дерево возможных ходов игроков и определить последовательность ходов, которая гарантированно приведёт по крайней мере одного из них к выигрышу или ничьей, то есть всегда может быть построен алгоритм выигрыша или сведения игры вничью по крайней мере для одной из сторон.

К играм с полной информацией относится большинство детерминированных настольных игр (например, шахматы, шашки, го, рэндзю, синци, сёги, крестики-нолики, реверси). Для большинства из них, однако, алгоритм выигрыша или гарантированной ничьей неизвестен: хотя теоретически он существует и может быть найден, на практике дерево вариантов слишком велико, чтобы его можно было построить и проанализировать за приемлемое время.


"Чем ночь темней, тем ярче звёзды"
 
GRELIKTIKONДата: Среда, 27.04.2011, 20:23 | Сообщение # 12
Генералиссимус
Группа: Администраторы
Сообщений: 1400
Награды: 0
Репутация: 0
Статус: Offline
Игры с бесконечным числом шагов

Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов…

Здесь вопрос обычно состоит в том, чтобы найти не оптимальное решение, а хотя бы выигрышную стратегию. (Используя аксиому выбора можно доказать, что иногда даже для игр с полной информацией и двумя исходами — «выиграл» или «проиграл» — ни один из игроков не имеет такой стратегии.) Существование выигрышных стратегий для некоторых интересных игр имеет важные последствия дескриптивная теория множеств.

Детерминированность

Детерминированность (от лат. determinans — определяющий) — определяемость. Детерминированность может подразумевать определяемость на общегносеологическом уровне или для конкретного алгоритма. Под детерминированностью процессов в мире понимается однозначная предопределённость.

Детерминированность в решении какой-либо практической задачи или в алгоритме означает, что способ решения задачи определён однозначно в виде последовательности шагов. На любом шаге не допускаются никакие двусмысленности или неопределённости.


"Чем ночь темней, тем ярче звёзды"
 
GRELIKTIKONДата: Среда, 27.04.2011, 20:23 | Сообщение # 13
Генералиссимус
Группа: Администраторы
Сообщений: 1400
Награды: 0
Репутация: 0
Статус: Offline
Дискретные и непрерывные игры

Большинство изучаемых игр дискретны: в них конечное число игроков, ходов, событий, исходов и т. п. Однако эти составляющие могут быть расширены на множество вещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой (обычно — шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры также рассматриваются в теории оптимизации, находят своё применение в технике и технологиях, физике.

Дифференциальные игры

Дифференциальные игры — раздел математической теории управления, в котором изучается управление объектом в конфликтных ситуациях (см. теория игр). В дифференциальных играх возможности игроков описываются дифференциальными уравнениями или дифференциальными включениями, содержащими управляющие векторы, которыми распоряжаются игроки. Для выбора своего управления каждый игрок может использовать лишь текущую информацию о поведении игроков. Различают дифференциальные игры двух игроков и многих игроков.

Наиболее исследованными являются Дифференциальные игры преследования, в которых количество игроков равно 2, одного называют догоняющим, другого убегающим. Цель догоняющего — приведение вектора z(t) на заданное множество M за возможно короткое время; цель убегающего — по возможности оттянуть момент прихода вектора z(t) на M. Основополагающие результаты в дифференциальных играх получены в 60-е гг. 20 в. в СССР Л. С. Понтрягиным, Н. Н. Красовским, Е. Ф. Мищенко, Б. Н. Пшеничным и др., в США — Р. Айзексом, Л. Берковицем, У. Флемингом и др.

Первым, кто исследовал дифференциальные игры, стал Руфус Айзекс (работа 1951 года, впервые опубликована в 1965 году). А одна из первых проанализированных им игр стала игра «Шофёр-убийца» (homicidal chauffeur game). Надо отметить, что сам Айзекс вместо «шофёра» и «пешехода» подразумевал торпеду и увёртывающийся от неё небольшой катер.


"Чем ночь темней, тем ярче звёзды"
 
GRELIKTIKONДата: Среда, 27.04.2011, 20:24 | Сообщение # 14
Генералиссимус
Группа: Администраторы
Сообщений: 1400
Награды: 0
Репутация: 0
Статус: Offline
Метаигры

Это такие игры, результатом которых является набор правил для другой игры (называемой целевой или игрой-объектом). Цель метаигр — увеличить полезность выдаваемого набора правил. Теория метаигр связана с теорией оптимальных механизмов (англ. Mechanism design).


"Чем ночь темней, тем ярче звёзды"
 
  • Страница 2 из 2
  • «
  • 1
  • 2
Поиск:

Disign by Mark © 2025